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Comparing posets (P ,≤) and (Q,≤): Tukey reductions

Tukey reduction

We say that P is Tukey reducible to Q and write P �T Q if there is a function
f : P → Q such that f −1(B) is bounded in P whenever B ⊆ Q is bounded. We
call such function a Tukey function between P and Q.

In other words...

P �T Q means for every q ∈ Q there is h(q) ∈ P such that for every x ∈ P, if
f (x) ≤ q then x ≤ h(q).
h : Q → P satisfies: h(C ) is cofinal in P for every cofinal C ⊆ Q.
Q is richer as a cofinal structure and cf (P) ≤ cf (Q).
Here cf (Q) denotes the least cardinality of a set C ⊆ Q which is cofinal, i.e. for
every q ∈ Q there is c ∈ C with q ≤ c .

Notation
P and Q are Tukey equivalent, P ≡T Q, whenever P �T Q and Q �T P.
P ≺T Q means P �T Q but not Q �T P.
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Families of subsets of ω

Orthogonal ideal

Given a family A of subsets of ω, its orthogonal is defined by
A⊥ = {B ⊆ ω : A ∩ B is finite for every A ∈ A}. It is always an ideal in P(ω).

Adequate family

A family A of subsets of ω is called adequate if A is hereditary and A ∈ A
whenever all finite subsets of A are in A.

Fact
An adequate family is closed as a subset of 2ω.

Proof

If A ⊆ P(ω) is adequate and A /∈ A then there is finite B ⊆ A such that B /∈ A
and we have {C ⊆ ω : B ⊆ C} ⊆ P(ω)\A.
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Five Tukey types

Five posets

We shall consider five posets: {0}, ω, ωω, K(Q) and [c]<ω.
They all are Tukey equivalent to poset K(X ) of compact subsets of some
topological space X ordered by inclusion:
{0} ≡T K([0, 1]), ω ≡T K(N), ωω ≡T K(R\Q),
[c]<ω ≡T K(X ), where X is R with discrete topology.

Theorem(Fremlin)

{0} ≺T ω ≺T ωω ≺T K(Q) ≺T [c]<ω

Theorem (Aviles, Plebanek, Rodriguez)

Assume the axiom of analytic determinancy.
If A ⊆ P(ω) is analytic as a subset of 2ω then A⊥ is Tukey equivalent to one of
posets {0}, ω, ωω, K(Q), [c]<ω.
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Many Tukey types

Theorem(Gartside,Mamatelashvili)

There exist 2c different Tukey types of orders of form K(X ), where X is a
separable metric space.

Proposition

Let X be a separable metric space, with countable dense subset D. Then
K(X ) ≡T A⊥, where A = {A ⊆ D : cl(A) is discrete in X}.

Sketch of the proof

From the results of Aviles, Plebanek and Rodriguez we have
KX (D) := {B ⊆ D : cl(B) ∈ K(X )} ≡T K(X ). We will show that KX (D) = A⊥.
For if cl(B) ∈ K(X ) and cl(A) is discrete, then obviously cl(A) ∩ cl(B) is finite,
and so is A ∩ B. Now if cl(B) /∈ K(X ), then there exist a sequence (xn)∞n=1 in B
without convergent subsequence, and then {xn : n ∈ N} is infinite closed discrete
subset of B.
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Examples of adequate families

Corollary

There are 2c different Tukey types of orders of form A⊥, where A is a family of
subsets of ω.

Thus we have shown, that without any assumptions about a family A ⊆ P(ω) we
get as many Tukey types of A⊥ as there can be. Now we return to five posets
defined earlier.

Examples of adequate families

Aviles has proved in abstract way, that for each of orders [c]<ω, K(Q), ωω and ω
there exist an adequate family A ⊆ P(ω) such that A⊥ is Tukey equivalent to
that order. I have found concrete examples of adequate families with their
orthogonals Tukey equivalent to that four orders.
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Example of type [c]<ω

Remarks

If P is a directed partial order of cardinality ≤ c then P �T [c]<ω.
(Let P = {pξ : ξ < c}; then pξ → ξ is a Tukey reduction.)

To show [c]<ω �T P we need to find U = {pξ : ξ < c} ⊆ P such that no
infinite subset of U is bounded.
(Then ξ → pξ is Tukey.)

Family of branches in Cantor tree

Now for any x ∈ 2ω we define B(x) = {x |n : n ∈ N} - a branch in Cantor tree
2<ω corresponding to x . The family A = {A ⊆ B(x) for some x ∈ 2ω} is
adequate in P(2<ω).

Combs

We define also comb C (x) corresponding to x ∈ 2ω as:
C (x) = {(x(0), 1− x(1)), (x(0), x(1), 1− x(2)), (x(0), x(1), x(2), 1− x(3)), . . .}
It’s easy to see, that C (x) ∩ B(y) is a singleton for every x ,y ∈ 2ω.
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Example of type [c]<ω, continued

We have now a family {C (x) : x ∈ 2ω} of size c in A⊥ = {B(x) : x ∈ 2ω}⊥. We
will show that this family meets the condition from the remark:

Proposition

Every infinite subset of {C (x) : x ∈ 2ω} is unbounded in {B(x) : x ∈ 2ω}⊥.

Sketch of the proof

Let (xn)∞n=1 be an infinite sequence of elements of 2ω. As 2ω is compact, we can
assume that (xn)∞n=1 converges to x0 ∈ 2ω, which is not in this sequence.
Let M ∈ N. There exists N ∈ N such that xN |M = x0|M, but as xN 6= x0,
there exists also m ≥ M such that x0(m) 6= xN(m),
and x0|m = (xN(0), . . . , xN(m − 1), 1− xN(m)) is an element of C (xN). This
shows, that

⋃
{C (xn) : n ∈ N} contains infinitely many elements of B(x0).

Corollary

{B(x) : x ∈ 2ω}⊥ ≡T [c]<ω
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Thank you very much for your attention!!!
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