Tukey types of orthogonal ideals

Tomasz Żuchowski

Mathematical Institute, University of Wrocław

Winter School of Abstract Analysis, Hejnice, February 2015

February 1, 2015 1 / 1

Image: A math a math

Comparing posets (P, \leq) and (Q, \leq) : Tukey reductions

Tukey reduction

We say that P is **Tukey reducible** to Q and write $P \leq_T Q$ if there is a function $f: P \rightarrow Q$ such that $f^{-1}(B)$ is bounded in P whenever $B \subseteq Q$ is bounded. We call such function a **Tukey function** between P and Q.

ADEA

Comparing posets (P, \leq) and (Q, \leq) : Tukey reductions

Tukey reduction

We say that P is **Tukey reducible** to Q and write $P \leq_T Q$ if there is a function $f : P \to Q$ such that $f^{-1}(B)$ is bounded in P whenever $B \subseteq Q$ is bounded. We call such function a **Tukey function** between P and Q.

In other words...

 $P \leq_T Q$ means for every $q \in Q$ there is $h(q) \in P$ such that for every $x \in P$, if $f(x) \leq q$ then $x \leq h(q)$. $h: Q \to P$ satisfies: h(C) is cofinal in P for every cofinal $C \subseteq Q$. Q is richer as a cofinal structure and $cf(P) \leq cf(Q)$. Here cf(Q) denotes the least cardinality of a set $C \subseteq Q$ which is **cofinal**, i.e. for every $q \in Q$ there is $c \in C$ with $q \leq c$.

イロト イヨト イヨト イヨ

Comparing posets (P, \leq) and (Q, \leq) : Tukey reductions

Tukey reduction

We say that P is **Tukey reducible** to Q and write $P \leq_T Q$ if there is a function $f : P \to Q$ such that $f^{-1}(B)$ is bounded in P whenever $B \subseteq Q$ is bounded. We call such function a **Tukey function** between P and Q.

In other words...

 $P \leq_T Q$ means for every $q \in Q$ there is $h(q) \in P$ such that for every $x \in P$, if $f(x) \leq q$ then $x \leq h(q)$. $h: Q \to P$ satisfies: h(C) is cofinal in P for every cofinal $C \subseteq Q$. Q is richer as a cofinal structure and $cf(P) \leq cf(Q)$. Here cf(Q) denotes the least cardinality of a set $C \subseteq Q$ which is **cofinal**, i.e. for every $q \in Q$ there is $c \in C$ with $q \leq c$.

Notation

P and *Q* are **Tukey equivalent**, $P \equiv_T Q$, whenever $P \preceq_T Q$ and $Q \preceq_T P$. $P \prec_T Q$ means $P \preceq_T Q$ but **not** $Q \preceq_T P$.

Families of subsets of ω

Orthogonal ideal

Given a family \mathcal{A} of subsets of ω , its **orthogonal** is defined by $\mathcal{A}^{\perp} = \{B \subseteq \omega : A \cap B \text{ is finite for every } A \in \mathcal{A}\}.$ It is always an ideal in $\mathcal{P}(\omega)$.

・ロト ・回ト ・ ヨト ・

Orthogonal ideal

Given a family \mathcal{A} of subsets of ω , its **orthogonal** is defined by $\mathcal{A}^{\perp} = \{B \subseteq \omega : A \cap B \text{ is finite for every } A \in \mathcal{A}\}.$ It is always an ideal in $\mathcal{P}(\omega)$.

Adequate family

A family \mathcal{A} of subsets of ω is called **adequate** if \mathcal{A} is hereditary and $A \in \mathcal{A}$ whenever all finite subsets of A are in \mathcal{A} .

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Orthogonal ideal

Given a family \mathcal{A} of subsets of ω , its **orthogonal** is defined by $\mathcal{A}^{\perp} = \{B \subseteq \omega : A \cap B \text{ is finite for every } A \in \mathcal{A}\}.$ It is always an ideal in $\mathcal{P}(\omega)$.

Adequate family

A family \mathcal{A} of subsets of ω is called **adequate** if \mathcal{A} is hereditary and $A \in \mathcal{A}$ whenever all finite subsets of A are in \mathcal{A} .

Fact

An adequate family is closed as a subset of 2^{ω} .

Orthogonal ideal

Given a family \mathcal{A} of subsets of ω , its **orthogonal** is defined by $\mathcal{A}^{\perp} = \{B \subseteq \omega : A \cap B \text{ is finite for every } A \in \mathcal{A}\}.$ It is always an ideal in $\mathcal{P}(\omega)$.

Adequate family

A family \mathcal{A} of subsets of ω is called **adequate** if \mathcal{A} is hereditary and $A \in \mathcal{A}$ whenever all finite subsets of A are in \mathcal{A} .

Fact

An adequate family is closed as a subset of 2^{ω} .

Proof

If $\mathcal{A} \subseteq \mathcal{P}(\omega)$ is adequate and $A \notin \mathcal{A}$ then there is finite $B \subseteq A$ such that $B \notin \mathcal{A}$ and we have $\{C \subseteq \omega : B \subseteq C\} \subseteq \mathcal{P}(\omega) \setminus \mathcal{A}$.

・ロト ・回ト ・ヨト ・

Five Tukey types

Five posets

We shall consider five posets: $\{0\}$, ω , ω^{ω} , $\mathcal{K}(\mathbb{Q})$ and $[\mathfrak{c}]^{<\omega}$. They all are Tukey equivalent to poset $\mathcal{K}(X)$ of compact subsets of some topological space X ordered by inclusion: $\{0\} \equiv_{\mathcal{T}} \mathcal{K}([0,1]), \omega \equiv_{\mathcal{T}} \mathcal{K}(\mathbb{N}), \omega^{\omega} \equiv_{\mathcal{T}} \mathcal{K}(\mathbb{R} \setminus \mathbb{Q}),$ $[\mathfrak{c}]^{<\omega} \equiv_{\mathcal{T}} \mathcal{K}(X)$, where X is \mathbb{R} with discrete topology.

イロト イヨト イヨト イヨ

Five Tukey types

Five posets

We shall consider five posets: $\{0\}$, ω , ω^{ω} , $\mathcal{K}(\mathbb{Q})$ and $[\mathfrak{c}]^{<\omega}$. They all are Tukey equivalent to poset $\mathcal{K}(X)$ of compact subsets of some topological space X ordered by inclusion: $\{0\} \equiv_{\mathcal{T}} \mathcal{K}([0,1]), \omega \equiv_{\mathcal{T}} \mathcal{K}(\mathbb{N}), \omega^{\omega} \equiv_{\mathcal{T}} \mathcal{K}(\mathbb{R} \setminus \mathbb{Q}),$ $[\mathfrak{c}]^{<\omega} \equiv_{\mathcal{T}} \mathcal{K}(X)$, where X is \mathbb{R} with discrete topology.

Theorem(Fremlin)

 $\{0\} \prec_{\mathcal{T}} \omega \prec_{\mathcal{T}} \omega^{\omega} \prec_{\mathcal{T}} \mathcal{K}(\mathbb{Q}) \prec_{\mathcal{T}} [\mathfrak{c}]^{<\omega}$

イロン イ部ン イヨン イヨ

Five Tukey types

Five posets

We shall consider five posets: $\{0\}$, ω , ω^{ω} , $\mathcal{K}(\mathbb{Q})$ and $[\mathfrak{c}]^{<\omega}$. They all are Tukey equivalent to poset $\mathcal{K}(X)$ of compact subsets of some topological space X ordered by inclusion: $\{0\} \equiv_{\mathcal{T}} \mathcal{K}([0,1]), \omega \equiv_{\mathcal{T}} \mathcal{K}(\mathbb{N}), \omega^{\omega} \equiv_{\mathcal{T}} \mathcal{K}(\mathbb{R} \setminus \mathbb{Q}),$ $[\mathfrak{c}]^{<\omega} \equiv_{\mathcal{T}} \mathcal{K}(X)$, where X is \mathbb{R} with discrete topology.

Theorem(Fremlin)

$$\{0\} \prec_{\mathcal{T}} \omega \prec_{\mathcal{T}} \omega^{\omega} \prec_{\mathcal{T}} \mathcal{K}(\mathbb{Q}) \prec_{\mathcal{T}} [\mathfrak{c}]^{<\omega}$$

Theorem (Aviles, Plebanek, Rodriguez)

Assume the axiom of analytic determinancy. If $\mathcal{A} \subseteq \mathcal{P}(\omega)$ is analytic as a subset of 2^{ω} then \mathcal{A}^{\perp} is Tukey equivalent to one of posets {0}, ω , ω^{ω} , $\mathcal{K}(\mathbb{Q})$, [c]^{< ω}.

イロト イヨト イヨト イヨ

Theorem(Gartside, Mamatelashvili)

There exist 2^{c} different Tukey types of orders of form $\mathcal{K}(X)$, where X is a separable metric space.

イロト イヨト イヨト

Many Tukey types

Theorem(Gartside, Mamatelashvili)

There exist 2^{c} different Tukey types of orders of form $\mathcal{K}(X)$, where X is a separable metric space.

Proposition

Let X be a separable metric space, with countable dense subset D. Then $\mathcal{K}(X) \equiv_{\mathcal{T}} \mathcal{A}^{\perp}$, where $\mathcal{A} = \{A \subseteq D : cl(A) \text{ is discrete in } X\}$.

・ロト ・回ト ・ ヨト ・

Theorem(Gartside,Mamatelashvili)

There exist 2^{c} different Tukey types of orders of form $\mathcal{K}(X)$, where X is a separable metric space.

Proposition

Let X be a separable metric space, with countable dense subset D. Then $\mathcal{K}(X) \equiv_{\mathcal{T}} \mathcal{A}^{\perp}$, where $\mathcal{A} = \{A \subseteq D : cl(A) \text{ is discrete in } X\}$.

Sketch of the proof

From the results of Aviles, Plebanek and Rodriguez we have $\mathcal{K}_X(D) := \{B \subseteq D : cl(B) \in \mathcal{K}(X)\} \equiv_T \mathcal{K}(X).$ We will show that $\mathcal{K}_X(D) = \mathcal{A}^{\perp}$.

Theorem(Gartside,Mamatelashvili)

There exist 2^{c} different Tukey types of orders of form $\mathcal{K}(X)$, where X is a separable metric space.

Proposition

Let X be a separable metric space, with countable dense subset D. Then $\mathcal{K}(X) \equiv_{\mathcal{T}} \mathcal{A}^{\perp}$, where $\mathcal{A} = \{A \subseteq D : cl(A) \text{ is discrete in } X\}$.

Sketch of the proof

From the results of Aviles, Plebanek and Rodriguez we have $\mathcal{K}_X(D) := \{B \subseteq D : cl(B) \in \mathcal{K}(X)\} \equiv_T \mathcal{K}(X)$. We will show that $\mathcal{K}_X(D) = \mathcal{A}^{\perp}$. For if $cl(B) \in \mathcal{K}(X)$ and cl(A) is discrete, then obviously $cl(A) \cap cl(B)$ is finite, and so is $A \cap B$.

・ロト ・回ト ・ヨト ・

Theorem(Gartside,Mamatelashvili)

There exist 2^{c} different Tukey types of orders of form $\mathcal{K}(X)$, where X is a separable metric space.

Proposition

Let X be a separable metric space, with countable dense subset D. Then $\mathcal{K}(X) \equiv_{\mathcal{T}} \mathcal{A}^{\perp}$, where $\mathcal{A} = \{A \subseteq D : cl(A) \text{ is discrete in } X\}$.

Sketch of the proof

From the results of Aviles, Plebanek and Rodriguez we have $\mathcal{K}_X(D) := \{B \subseteq D : cl(B) \in \mathcal{K}(X)\} \equiv_T \mathcal{K}(X)$. We will show that $\mathcal{K}_X(D) = \mathcal{A}^{\perp}$. For if $cl(B) \in \mathcal{K}(X)$ and cl(A) is discrete, then obviously $cl(A) \cap cl(B)$ is finite, and so is $A \cap B$. Now if $cl(B) \notin \mathcal{K}(X)$, then there exist a sequence $(x_n)_{n=1}^{\infty}$ in B without convergent subsequence, and then $\{x_n : n \in \mathbb{N}\}$ is infinite closed discrete subset of B.

・ロト ・日下・ ・ ヨト・

Corollary

There are 2^c different Tukey types of orders of form \mathcal{A}^{\perp} , where \mathcal{A} is a family of subsets of ω .

Thus we have shown, that without any assumptions about a family $\mathcal{A} \subseteq \mathcal{P}(\omega)$ we get as many Tukey types of \mathcal{A}^{\perp} as there can be. Now we return to five posets defined earlier.

A D > A B > A B >

Corollary

There are 2^c different Tukey types of orders of form \mathcal{A}^{\perp} , where \mathcal{A} is a family of subsets of ω .

Thus we have shown, that without any assumptions about a family $\mathcal{A} \subseteq \mathcal{P}(\omega)$ we get as many Tukey types of \mathcal{A}^{\perp} as there can be. Now we return to five posets defined earlier.

Examples of adequate families

Aviles has proved in abstract way, that for each of orders $[\mathfrak{c}]^{<\omega}$, $\mathcal{K}(\mathbb{Q})$, ω^{ω} and ω there exist an adequate family $\mathcal{A} \subseteq \mathcal{P}(\omega)$ such that \mathcal{A}^{\perp} is Tukey equivalent to that order. I have found concrete examples of adequate families with their orthogonals Tukey equivalent to that four orders.

・ロン ・回 と ・ 回 と ・

Example of type $[\mathfrak{c}]^{<\omega}$

Remarks

 If P is a directed partial order of cardinality ≤ c then P ≤_T [c]^{<ω}. (Let P = {p_ξ : ξ < c}; then p_ξ → ξ is a Tukey reduction.)

メロト メポト メヨト メ

Example of type $[c]^{<\omega}$

Remarks

- If P is a directed partial order of cardinality ≤ c then P ≤_T [c]^{<ω}. (Let P = {p_ξ : ξ < c}; then p_ξ → ξ is a Tukey reduction.)
- To show [c]^{<ω} ≤_T P we need to find U = {p_ξ : ξ < c} ⊆ P such that no infinite subset of U is bounded. (Then ξ → p_ξ is Tukey.)

<ロト </p>

Example of type $[c]^{<\omega}$

Remarks

 If P is a directed partial order of cardinality ≤ c then P ≤_T [c]^{<ω}. (Let P = {p_ξ : ξ < c}; then p_ξ → ξ is a Tukey reduction.)

• To show $[\mathfrak{c}]^{\leq \omega} \preceq_T P$ we need to find $U = \{p_{\xi} : \xi < \mathfrak{c}\} \subseteq P$ such that no infinite subset of U is bounded. (Then $\xi \to p_{\xi}$ is Tukey.)

Family of branches in Cantor tree

Now for any $x \in 2^{\omega}$ we define $B(x) = \{x | n : n \in \mathbb{N}\}$ - a branch in Cantor tree $2^{<\omega}$ corresponding to x. The family $\mathcal{A} = \{A \subseteq B(x) \text{ for some } x \in 2^{\omega}\}$ is adequate in $\mathcal{P}(2^{<\omega})$.

イロト イ団ト イヨト イヨト

Example of type $[c]^{<\omega}$

Remarks

 If P is a directed partial order of cardinality ≤ c then P ≤_T [c]^{<ω}. (Let P = {p_ξ : ξ < c}; then p_ξ → ξ is a Tukey reduction.)

• To show $[\mathfrak{c}]^{\leq \omega} \preceq_T P$ we need to find $U = \{p_{\xi} : \xi < \mathfrak{c}\} \subseteq P$ such that no infinite subset of U is bounded. (Then $\xi \to p_{\xi}$ is Tukey.)

Family of branches in Cantor tree

Now for any $x \in 2^{\omega}$ we define $B(x) = \{x | n : n \in \mathbb{N}\}$ - a branch in Cantor tree $2^{<\omega}$ corresponding to x. The family $\mathcal{A} = \{A \subseteq B(x) \text{ for some } x \in 2^{\omega}\}$ is adequate in $\mathcal{P}(2^{<\omega})$.

Combs

We define also **comb** C(x) corresponding to $x \in 2^{\omega}$ as: $C(x) = \{(x(0), 1 - x(1)), (x(0), x(1), 1 - x(2)), (x(0), x(1), x(2), 1 - x(3)), \ldots\}$ It's easy to see, that $C(x) \cap B(y)$ is a singleton for every $x, y \in 2^{\omega}$.

We have now a family $\{C(x) : x \in 2^{\omega}\}$ of size \mathfrak{c} in $\mathcal{A}^{\perp} = \{B(x) : x \in 2^{\omega}\}^{\perp}$. We will show that this family meets the condition from the remark:

We have now a family $\{C(x) : x \in 2^{\omega}\}$ of size \mathfrak{c} in $\mathcal{A}^{\perp} = \{B(x) : x \in 2^{\omega}\}^{\perp}$. We will show that this family meets the condition from the remark:

Proposition

Every infinite subset of $\{C(x) : x \in 2^{\omega}\}$ is unbounded in $\{B(x) : x \in 2^{\omega}\}^{\perp}$.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

We have now a family $\{C(x) : x \in 2^{\omega}\}$ of size \mathfrak{c} in $\mathcal{A}^{\perp} = \{B(x) : x \in 2^{\omega}\}^{\perp}$. We will show that this family meets the condition from the remark:

Proposition

Every infinite subset of $\{C(x) : x \in 2^{\omega}\}$ is unbounded in $\{B(x) : x \in 2^{\omega}\}^{\perp}$.

Sketch of the proof

Let $(x_n)_{n=1}^{\infty}$ be an infinite sequence of elements of 2^{ω} . As 2^{ω} is compact, we can assume that $(x_n)_{n=1}^{\infty}$ converges to $x_0 \in 2^{\omega}$, which is not in this sequence.

イロト イヨト イヨト イ

We have now a family $\{C(x) : x \in 2^{\omega}\}$ of size \mathfrak{c} in $\mathcal{A}^{\perp} = \{B(x) : x \in 2^{\omega}\}^{\perp}$. We will show that this family meets the condition from the remark:

Proposition

Every infinite subset of $\{C(x) : x \in 2^{\omega}\}$ is unbounded in $\{B(x) : x \in 2^{\omega}\}^{\perp}$.

Sketch of the proof

Let $(x_n)_{n=1}^{\infty}$ be an infinite sequence of elements of 2^{ω} . As 2^{ω} is compact, we can assume that $(x_n)_{n=1}^{\infty}$ converges to $x_0 \in 2^{\omega}$, which is not in this sequence. Let $M \in \mathbb{N}$. There exists $N \in \mathbb{N}$ such that $x_N | M = x_0 | M$, but as $x_N \neq x_0$, there exists also $m \ge M$ such that $x_0(m) \ne x_N(m)$,

(ロ) (回) (三) (三)

We have now a family $\{C(x) : x \in 2^{\omega}\}$ of size \mathfrak{c} in $\mathcal{A}^{\perp} = \{B(x) : x \in 2^{\omega}\}^{\perp}$. We will show that this family meets the condition from the remark:

Proposition

Every infinite subset of $\{C(x) : x \in 2^{\omega}\}$ is unbounded in $\{B(x) : x \in 2^{\omega}\}^{\perp}$.

Sketch of the proof

Let $(x_n)_{n=1}^{\infty}$ be an infinite sequence of elements of 2^{ω} . As 2^{ω} is compact, we can assume that $(x_n)_{n=1}^{\infty}$ converges to $x_0 \in 2^{\omega}$, which is not in this sequence. Let $M \in \mathbb{N}$. There exists $N \in \mathbb{N}$ such that $x_N | M = x_0 | M$, but as $x_N \neq x_0$, there exists also $m \ge M$ such that $x_0(m) \ne x_N(m)$, and $x_0 | m = (x_N(0), \dots, x_N(m-1), 1 - x_N(m))$ is an element of $C(x_N)$. This shows, that $\bigcup \{C(x_n) : n \in \mathbb{N}\}$ contains infinitely many elements of $B(x_0)$.

イロン イヨン イヨン イヨン

We have now a family $\{C(x) : x \in 2^{\omega}\}$ of size \mathfrak{c} in $\mathcal{A}^{\perp} = \{B(x) : x \in 2^{\omega}\}^{\perp}$. We will show that this family meets the condition from the remark:

Proposition

Every infinite subset of $\{C(x) : x \in 2^{\omega}\}$ is unbounded in $\{B(x) : x \in 2^{\omega}\}^{\perp}$.

Sketch of the proof

Let $(x_n)_{n=1}^{\infty}$ be an infinite sequence of elements of 2^{ω} . As 2^{ω} is compact, we can assume that $(x_n)_{n=1}^{\infty}$ converges to $x_0 \in 2^{\omega}$, which is not in this sequence. Let $M \in \mathbb{N}$. There exists $N \in \mathbb{N}$ such that $x_N | M = x_0 | M$, but as $x_N \neq x_0$, there exists also $m \ge M$ such that $x_0(m) \ne x_N(m)$, and $x_0 | m = (x_N(0), \dots, x_N(m-1), 1 - x_N(m))$ is an element of $C(x_N)$. This shows, that $\bigcup \{C(x_n) : n \in \mathbb{N}\}$ contains infinitely many elements of $B(x_0)$.

Corollary

$$\{B(x): x \in 2^{\omega}\}^{\perp} \equiv_{\mathcal{T}} [\mathfrak{c}]^{<\omega}$$

・ロット (雪) (山) (

Thank you very much for your attention!!!