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Comparing posets (P, <) and (Q, <): Tukey reductions

Tukey reduction

We say that P is Tukey reducible to @ and write P <1 Q if there is a function
f: P — Q such that f~(B) is bounded in P whenever B C Q is bounded. We
call such function a Tukey function between P and Q.
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Tukey reduction

We say that P is Tukey reducible to @ and write P <1 Q if there is a function
f: P — Q such that f~(B) is bounded in P whenever B C Q is bounded. We
call such function a Tukey function between P and Q.

In other words...

P <1 @ means for every g € Q there is h(g) € P such that for every x € P, if
f(x) < g then x < h(q).

h: Q — P satisfies: h(C) is cofinal in P for every cofinal C C Q.

Q is richer as a cofinal structure and cf(P) < cf(Q).

Here cf(Q) denotes the least cardinality of a set C C Q which is cofinal, i.e. for
every g € Q there is c € C with g < c.
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Comparing posets (P, <) and (Q, <): Tukey reductions

Tukey reduction

We say that P is Tukey reducible to @ and write P <1 Q if there is a function
f: P — Q such that f~(B) is bounded in P whenever B C Q is bounded. We
call such function a Tukey function between P and Q.

In other words...

P <1 @ means for every g € Q there is h(g) € P such that for every x € P, if
f(x) < g then x < h(q).

h: Q — P satisfies: h(C) is cofinal in P for every cofinal C C Q.

Q is richer as a cofinal structure and cf (P) < ¢f(Q).

Here cf(Q) denotes the least cardinality of a set C C Q which is cofinal, i.e. for
every g € Q there is c € C with g < c.

Notation

P and @ are Tukey equivalent, P =1 @, whenever P <1 Q and Q <1 P.
P <+ @ means P <+ Q but not Q <+ P.
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Families of subsets of w

Orthogonal ideal

Given a family A of subsets of w, its orthogonal is defined by
At ={B Cw: AN B is finite for every A € A}. It is always an ideal in P(w).
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Families of subsets of w

Orthogonal ideal

Given a family A of subsets of w, its orthogonal is defined by
At ={B Cw: AN B is finite for every A € A}. It is always an ideal in P(w).

Adequate family

A family A of subsets of w is called adequate if A is hereditary and A € A
whenever all finite subsets of A are in A.

An adequate family is closed as a subset of 2. \

If A C P(w) is adequate and A ¢ A then there is finite B C A such that B ¢ A
and we have {C Cw: B C C} C P(w)\A.
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Five Tukey types

Five posets

We shall consider five posets: {0}, w, w*, K(Q) and [¢]<¥.

They all are Tukey equivalent to poset (X) of compact subsets of some
topological space X ordered by inclusion:

{0} =7 K(]0,1]), w =7 K(N), w* =7 L(R\Q),

[c(]< =7 K(X), where X is R with discrete topology.
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Five Tukey types

Five posets

We shall consider five posets: {0}, w, w*, K(Q) and [¢]<¥.

They all are Tukey equivalent to poset (X) of compact subsets of some
topological space X ordered by inclusion:

{0} =7 K(]0,1]), w =7 K(N), w* =7 L(R\Q),

[c(]< =7 K(X), where X is R with discrete topology.

Theorem(Fremlin)
{O} <Tw<T WY <T IC(Q) <7 [C]<w

Theorem (Aviles, Plebanek, Rodriguez)

Assume the axiom of analytic determinancy.
If A C P(w) is analytic as a subset of 2% then AL is Tukey equivalent to one of
posets {0}, w, w*, K(Q), [c]<¥.
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Many Tukey types

Theorem(Gartside, Mamatelashvili)

There exist 2¢ different Tukey types of orders of form IC(X), where X is a
separable metric space.
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Many Tukey types

Theorem(Gartside, Mamatelashvili)

There exist 2¢ different Tukey types of orders of form IC(X), where X is a
separable metric space.

Proposition

Let X be a separable metric space, with countable dense subset D. Then
K(X) =1 A, where A= {AC D: cl(A) is discrete in X}.

Sketch of the proof

From the results of Aviles, Plebanek and Rodriguez we have
Kx(D):={B C D:cl(B) € K(X)} =7 K(X). We will show that Kx(D) = A*+.

| \
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Many Tukey types

Theorem(Gartside, Mamatelashvili)

There exist 2¢ different Tukey types of orders of form IC(X), where X is a
separable metric space.

Proposition

Let X be a separable metric space, with countable dense subset D. Then
K(X) =1 A, where A= {AC D: cl(A) is discrete in X}.

| \

Sketch of the proof

From the results of Aviles, Plebanek and Rodriguez we have

Kx(D):={B C D:cl(B) € K(X)} =7 K(X). We will show that Kx(D) = A*+.
For if c/(B) € K(X) and c/(A) is discrete, then obviously c/(A) N c/(B) is finite,
and so is AN B.
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Many Tukey types

Theorem(Gartside, Mamatelashvili)

There exist 2¢ different Tukey types of orders of form IC(X), where X is a
separable metric space.

Let X be a separable metric space, with countable dense subset D. Then
K(X) =1 A, where A= {AC D: cl(A) is discrete in X}.

Sketch of the proof

From the results of Aviles, Plebanek and Rodriguez we have

Kx(D):={B C D:cl(B) € K(X)} =7 K(X). We will show that Kx(D) = A*+.
For if cl(B) € K(X) and cl(A) is discrete, then obviously c/(A) N cl/(B) is finite,
and so is AN B. Now if c/(B) ¢ K(X), then there exist a sequence (x,)7, in B
without convergent subsequence, and then {x, : n € N} is infinite closed discrete
subset of B.

4
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Examples of adequate families

There are 2¢ different Tukey types of orders of form A", where A is a family of
subsets of w.

Thus we have shown, that without any assumptions about a family 4 C P(w) we
get as many Tukey types of A' as there can be. Now we return to five posets
defined earlier.
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Examples of adequate families

There are 2¢ different Tukey types of orders of form A", where A is a family of
subsets of w.

Thus we have shown, that without any assumptions about a family 4 C P(w) we
get as many Tukey types of A' as there can be. Now we return to five posets
defined earlier.

Examples of adequate families

Aviles has proved in abstract way, that for each of orders [¢c]<“, K(Q), w* and w
there exist an adequate family A C P(w) such that A+ is Tukey equivalent to
that order. | have found concrete examples of adequate families with their
orthogonals Tukey equivalent to that four orders.
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Example of type [¢]~*

o If Pis a directed partial order of cardinality < ¢ then P <1 [¢]<.
(Let P = {p¢ : £ < c}; then pe — ¢ is a Tukey reduction.)
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o If Pis a directed partial order of cardinality < ¢ then P <1 [¢]<.
(Let P = {p¢ : £ < c}; then pe — ¢ is a Tukey reduction.)

@ To show [c]<¥ <7 P we need to find U = {p¢ : £ < ¢} C P such that no
infinite subset of U is bounded.
(Then & — pe is Tukey.)

Family of branches in Cantor tree

Now for any x € 2 we define B(x) = {x|n: n € N} - a branch in Cantor tree
2<% corresponding to x. The family A = {A C B(x) for some x € 2¥} is
adequate in P(2<%).
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Example of type [¢]~*

o If Pis a directed partial order of cardinality < ¢ then P <1 [¢]<.
(Let P = {p¢ : £ < c}; then pe — ¢ is a Tukey reduction.)
@ To show [c]<¥ <7 P we need to find U = {p¢ : £ < ¢} C P such that no

infinite subset of U is bounded.
(Then & — pe is Tukey.)

Family of branches in Cantor tree

Now for any x € 2 we define B(x) = {x|n: n € N} - a branch in Cantor tree
2<% corresponding to x. The family A = {A C B(x) for some x € 2¥} is
adequate in P(2<%).

We define also comb C(x) corresponding to x € 2 as:

C(x) = {(x(0), 1 = x(1)), (x(0), x(1),1 = x(2)), (x(0),x(1), x(2),1 = x(3)). - - .}

- (x(0
It's easy to see, that C(x) N B(y) is a singleton for every x,y € 2¢.
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Example of type [¢]~“, continued

We have now a family {C(x) : x € 2} of size ¢ in A+ = {B(x) : x € 2¢}+. We
will show that this family meets the condition from the remark:
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Proposition

Every infinite subset of {C(x) : x € 2} is unbounded in {B(x) : x € 2*}+.

Sketch of the proof

Let (x,)52; be an infinite sequence of elements of 2. As 2“ is compact, we can
assume that (x,)72; converges to xp € 2*, which is not in this sequence.
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Example of type [¢]~“, continued

We have now a family {C(x) : x € 2} of size ¢ in A+ = {B(x) : x € 2¢}+. We
will show that this family meets the condition from the remark:

Proposition
Every infinite subset of {C(x) : x € 2} is unbounded in {B(x) : x € 2*}+.

Sketch of the proof

Let (x,)52; be an infinite sequence of elements of 2. As 2“ is compact, we can
assume that (x,)72; converges to xp € 2*, which is not in this sequence.
Let M € N. There exists N € N such that xy|M = xo|M, but as xy # xo,

there exists also m > M such that xo(m) # xy(m),
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Sketch of the proof

Let (x,)52; be an infinite sequence of elements of 2. As 2“ is compact, we can
assume that (x,)72; converges to xp € 2*, which is not in this sequence.

Let M € N. There exists N € N such that xy|M = xo|M, but as xy # xo,

there exists also m > M such that xo(m) # xy(m),

and xp|m = (xn(0), ..., xy(m —1),1 — xy(m)) is an element of C(xy). This
shows, that [J{C(x,) : n € N} contains infinitely many elements of B(xp).
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Example of type [¢]~“, continued

We have now a family {C(x) : x € 2} of size ¢ in A+ = {B(x) : x € 2¢}+. We
will show that this family meets the condition from the remark:

Proposition
Every infinite subset of {C(x) : x € 2} is unbounded in {B(x) : x € 2*}+.

Sketch of the proof

Let (x,)52; be an infinite sequence of elements of 2. As 2“ is compact, we can
assume that (x,)72; converges to xp € 2*, which is not in this sequence.

Let M € N. There exists N € N such that xy|M = xp|M, but as xy # xo,

there exists also m > M such that xo(m) # xy(m),

and xp|m = (xn(0), ..., xy(m —1),1 — xy(m)) is an element of C(xy). This
shows, that [J{C(x,) : n € N} contains infinitely many elements of B(xp).

{B(x): x € 2¢}+ =1 []<¢
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Thank you very much for your attention!!!
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